NUMEROUS SERIES (II - PART)

D`Alember criteria

If for series $\sum_{n=1}^{\infty} a_{n}$ there is $\varlimsup_{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\mathrm{r}$ then:

- For $r>1$ series is divergent
- For $r=1$ undecidable
- For $\mathrm{r}<1$ series is convergent

Example 1.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{1}{n!}$

Solution:

First, to determine a_{n}. Here it is $a_{n}=\frac{1}{n!}$ (Ie take all the behind the label of the series). Further determined a_{n+1}. How?

Watch a_{n} and instead n we put $n+1$, so $a_{n+1}=\frac{1}{(n+1)!}$
Now we use D`Alember criteria:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{(n+1)!}}{\frac{1}{n!}}\right|=\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{n!}{(n+1) \cdot \lambda!}=\lim _{n \rightarrow \infty} \frac{1}{(n+1)}=0$

So, we got $\mathrm{r}=0<1$, and by this criteria, series $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges.

Example 2.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{2^{n}}{n}$

Solution:

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{2^{n+1}}{n+1}}{\frac{2^{n}}{n}}\right|=\lim _{n \rightarrow \infty} \frac{n \cdot 2^{n+1}}{2^{n} \cdot(n+1)}=\lim _{n \rightarrow \infty} \frac{n \cdot 2^{n} \cdot 2}{2^{n} \cdot(n+1)}=2 \lim _{n \rightarrow \infty} \frac{n}{n+1}=2 \cdot 1=2$ Here we get that $\mathrm{r}=2$, which tells us that $\sum_{n=1}^{\infty} \frac{2^{n}}{n}$ diverges

Example 3.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \cdot \frac{1}{2^{n+1}}$

Solution:

Here is $a_{n}=\frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2^{n+1}}$, And to remind ourselves what this two-factorial means...
$n!=n(n-1)(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$
$n!!=n(n-2) \cdot(n-4) \cdot \ldots \cdot$
Depending on whether n is odd or even, when there is !! we get to 2 or 1 . For example:
$10!!=10 \cdot 8 \cdot 6 \cdot 4 \cdot 2$
$9!!=9 \cdot 7 \cdot 5 \cdot 3 \cdot 1$
Here, we encourage you to keep track of the brackets, because ($n!$)! $\neq n!!$
To get back to the task:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{(2 n+1)!!}{(2 n+2)!!} \cdot \frac{1}{2^{n+2}}}{\frac{(2 n-1)!!}{(2 n)!!} \cdot \frac{1}{2^{n+1}}} & =\lim _{n \rightarrow \infty} \frac{2^{n+1}}{2^{n+2}} \cdot \frac{(2 n+1)!!}{(2 n-1)!!} \cdot \frac{(2 n)!!}{(2 n+2)!!}= \\
& =\lim _{n \rightarrow \infty} \frac{2^{n+1}}{2^{n+1} \cdot 2} \cdot \frac{(2 n+1)(2 n-1)!!}{(2 n-1)!!} \cdot \frac{(2 n)!!}{(2 n+2)(2 n)!!} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2} \cdot \frac{2 n+1}{2 n+2}=\frac{1}{2}
\end{aligned}
$$

So , $\mathrm{r}=1 / 2$, then given series converge.

Example 4.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$

Solution:

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}}=\lim _{n \rightarrow \infty} \frac{(n+1)!}{n!} \cdot \frac{n^{n}}{(n+1)^{n+1}}=\lim _{n \rightarrow \infty} \frac{(n+1) \cdot n!}{n!} \cdot \frac{n^{n}}{(n+1)(n+1)^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=$
$=\lim _{n \rightarrow \infty}\left(\frac{1}{\frac{n+1}{n}}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{1}{n}}\right)^{n}=\frac{1}{e}$

Let's solve this in another way.
We will use something which is often used when there is $n!$. This is the so-called Stirling approximation:

$$
n!\approx \sqrt{2 n \pi} \cdot n^{n} \cdot e^{-n}
$$

Now we have:
$a_{n}=\frac{n!}{n^{n}} \sim \frac{\sqrt{2 n \pi} \cdot \not n^{h} \cdot e^{-n}}{\not n^{h}}=\frac{\sqrt{2 n \pi}}{e^{n}}$
Try again this criteria:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{2(n+1) \pi}}{e^{n+1}}}{\frac{\sqrt{2 n \pi}}{e^{n}}}=\lim _{n \rightarrow \infty} \frac{e^{n}}{e^{n+1}} \cdot \frac{\sqrt{2(n+1) \pi}}{\sqrt{2 n \pi}}=\lim _{n \rightarrow \infty} \frac{e^{k}}{\ell^{k} \cdot e} \cdot \sqrt{\frac{2 \pi(n+1)}{2 \pi n}}= \\
& =\lim _{n \rightarrow \infty} \frac{1}{e} \cdot \sqrt{\frac{(n+1)}{n}}=\sqrt{\frac{1}{e}} \\
& \text { teei } 1
\end{aligned}
$$

So, $r=1 / e$, this series converges.

Example 5.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{n^{p}}{n!}$

Solution:

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{p+1}}{(n+1)!}}{\frac{n^{p}}{n!}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{p+1}}{n^{p}} \frac{n!}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{(n+1)^{p}(n+1)}{n^{p}} \frac{n!}{(n+1)}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{p}=$
$=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{p}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{\frac{p}{n}}=e^{\lim _{n \rightarrow \infty} \frac{p}{n}}=e^{o}=1$

Criterion is undecidable, apply an approximation:

$$
a_{n}=\frac{n^{p}}{n!} \sim \frac{n^{p}}{\sqrt{2 n \pi} \cdot n^{n} \cdot e^{-n}}=\frac{n^{p} \cdot e^{n}}{\sqrt{2 n \pi} \cdot n^{n}}
$$

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{p} \cdot e^{n+1}}{\sqrt{2(n+1) \pi} \cdot(n+1)^{n+1}}}{\frac{n^{p} \cdot e^{n}}{\sqrt{2 n \pi} \cdot n^{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{2 n \pi}}{\sqrt{2(n+1) \pi}} \frac{e^{n+1}}{e^{n}} \frac{n^{n}}{(n+1)^{n+1}} \frac{(n+1)^{p}}{n^{p}}=$
$\lim _{n \rightarrow \infty} \sqrt{\frac{\sqrt{2 n \pi}}{\sqrt{2(n+1) \pi}}} \frac{e_{\text {teëi } 1}^{n} \cdot e}{e^{<}} \frac{n^{n}}{(n+1)^{n} \cdot(n+1)} \frac{(n+1)^{p}}{n^{p}}=$
$\lim _{n \rightarrow \infty} e \cdot\left(\frac{n}{n+1}\right)^{n} \frac{1}{n+1} \underbrace{\left(\frac{n+1}{n}\right)^{p}}_{\text {teëi } 1}=\lim _{n \rightarrow \infty} e \cdot\left(1+\frac{n}{n+1}-1\right)^{n} \frac{1}{n+1}=\lim _{n \rightarrow \infty} e \cdot\left(1+\frac{n-n-1}{n+1}\right)^{n} \frac{1}{n+1}$
$=\lim _{n \rightarrow \infty} e \cdot\left(1+\frac{-1}{n+1}\right)^{n} \frac{1}{n+1}=e \lim _{n \rightarrow \infty}\left(1+\frac{1}{-n-1}\right)^{n \cdot(-n-1) \cdot \frac{1}{(-n-1)}} \frac{1}{n+1}=$
$=e \lim _{n \rightarrow \infty}\left(1+\frac{1}{-n-1}\right)^{(-n-1) \cdot \frac{n}{(-n-1)}} \frac{1}{n+1}=e \cdot e^{-1} \lim _{n \rightarrow \infty} \frac{1}{n+1}=0$

So, given series converge.

Roots Cauchy criteria :

If for series $\sum_{n=1}^{\infty} a_{n}$ there is $\quad \varlimsup_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\mathrm{p} \quad$ then:

- For $p>1$ series is divergent
- For $\mathrm{p}=1$ undecidable
- For $\mathrm{p}<1$ series is convergent

Example 6.

Examine the convergence of series $\sum_{n=1}^{\infty}\left(\frac{n-1}{n+1}\right)^{n(n-1)}$

Solution:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n-1}{n+1}\right)^{n(n-1)}}=\lim _{n \rightarrow \infty}\left(\frac{n-1}{n+1}\right)^{\frac{n(n-1)}{n}}=\lim _{n \rightarrow \infty}\left(\frac{n-1}{n+1}\right)^{n-1}= \\
& \lim _{n \rightarrow \infty}\left(1+\frac{n-1}{n+1}-1\right)^{n-1}=\lim _{n \rightarrow \infty}\left(1+\frac{n-1-n-1}{n+1}\right)^{n-1}=\lim _{n \rightarrow \infty}\left(1+\frac{-2}{n+1}\right)^{n-1}=
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty}\left(1+\frac{1}{\frac{n+1}{-2}}\right)^{\frac{n+1}{-2} \cdot \frac{-2}{n+1}(n-1)}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{\frac{n+1}{-2}}\right)^{\frac{n+1}{\frac{-2}{-2} \cdot \frac{-2}{n+1}(n-1)}}=e^{\lim _{n \rightarrow \infty} \frac{-2 n+2}{n+1}}=e^{-2}=\frac{1}{e^{2}}
$$

As is $\mathrm{r}=\frac{1}{e^{2}}<1$, series $\sum_{n=1}^{\infty}\left(\frac{n-1}{n+1}\right)^{n(n-1)}$ converge by Cauchy criteria.

Example 7.

Examine the convergence of series $\sum_{n=1}^{\infty}\left(\frac{1+\cos n}{2+\cos n}\right)^{2 n-\ln n}$

Solution:

$\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{1+\cos n}{2+\cos n}\right)^{2 n-\ln n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{1+\cos n}{2+\cos n}\right)^{n\left(2-\frac{\ln n}{n}\right)}}=\lim _{n \rightarrow \infty}\left(\frac{1+\cos n}{2+\cos n}\right)^{2-\frac{\ln n}{n}}$
We know that $\frac{\ln n}{n}$ approaches 0 when n tends infinity, and $\cos n$ can not have more value from 1.Then:
$\lim _{n \rightarrow \infty}\left(\frac{1+\cos n}{2+\cos n}\right)^{2-\frac{\ln n}{n}} \leq \lim _{n \rightarrow \infty}\left(\frac{1+1}{2+1}\right)^{2-0}=\lim _{n \rightarrow \infty}\left(\frac{2}{3}\right)^{2}=\frac{4}{9}<1$
So, this series converges.

Raabe criteria :

If for series $\sum_{n=1}^{\infty} a_{n}$ there is $\lim _{n \rightarrow \infty} n\left(\frac{a_{n}}{a_{n+1}}-1\right)=\mathrm{t}$ then :

- For $t>1$ series is convergent
- For $t=1$ undecidable
- For $\mathrm{t}<1$ series is divergent

Example 8.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \cdot \frac{1}{2 n+1}$

Solution:

$\lim _{n \rightarrow \infty} n\left(\frac{a_{n}}{a_{n+1}}-1\right)=\lim _{n \rightarrow \infty} n\left(\frac{\frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n+1}}{\frac{(2 n+1)!!}{(2 n+2)!!} \frac{1}{2 n+3}}-1\right)=\lim _{n \rightarrow \infty} n\left(\frac{(2 n-1)!!}{(2 n+1)!!} \frac{(2 n+2)!!}{(2 n)!!} \frac{2 n+3}{2 n+1}-1\right)$
$=\lim _{n \rightarrow \infty} n\left(\frac{(2 n-1)!!}{(2 n+1)(2 n-1)!!} \frac{(2 n+2)(2 n)!!}{(2 n)!!} \frac{2 n+3}{2 n+1}-1\right)=$
$=\lim _{n \rightarrow \infty} n\left(\frac{(2 n+2)(2 n+3)}{(2 n+1)^{2}}-1\right)=\lim _{n \rightarrow \infty} n\left(\frac{(2 n+2)(2 n+3)-(2 n+1)^{2}}{(2 n+1)^{2}}\right)=$
$=\lim _{n \rightarrow \infty} n\left(\frac{4 n^{2}+6 n+4 n+6-4 n^{2}-4 n-1}{(2 n+1)^{2}}\right)=\lim _{n \rightarrow \infty} n\left(\frac{6 n+5}{(2 n+1)^{2}}\right)=$
$=\lim _{n \rightarrow \infty} \frac{6 n^{2}+5 n}{4 n^{2}+4 n+1}=\frac{6}{4}=\frac{3}{2}>1$
This means that this series, by this criteria converge.

Example 9.

Find the value of the parameter p so that $\sum_{n=1}^{\infty} \frac{n!e^{n}}{n^{n+p}}$ converges.

Solution:

First we handle the term $\frac{a_{n}}{a_{n+1}}$
$\frac{a_{n}}{a_{n+1}}=\frac{\frac{n!e^{n}}{n^{n+p}}}{\frac{(n+1)!e^{n+1}}{(n+1)^{n+1+p}}}=\frac{n!}{(n+1)!} \frac{e^{n}}{e^{n+1}} \frac{(n+1)^{n+1+p}}{n^{n+p}}=\frac{n!}{(n+1) \cdot n!e^{n} \cdot e} \frac{e^{n}}{(n+1)^{n+p} \cdot(n+1)} n^{n+p}=\frac{1}{e} \frac{(n+1)^{n+p}}{n^{n+p}}=$
$=\frac{1}{e}\left(\frac{n+1}{n}\right)^{n+p}=\frac{1}{e}\left(1+\frac{1}{n}\right)^{n+p}$

Now, we use :
$e^{\ln \Theta}=\Theta, \quad$ where is $\Theta=\left(1+\frac{1}{n}\right)^{n+p}$
$\left(1+\frac{1}{n}\right)^{n+p}=e^{\ln \left(1+\frac{1}{n}\right)^{n+p}}=e^{(n+p) \ln \left(1+\frac{1}{n}\right)}$
We have:
$\frac{a_{n}}{a_{n+1}}=\frac{1}{e}\left(1+\frac{1}{n}\right)^{n+p}=\frac{1}{e} e^{(n+p) \ln \left(1+\frac{1}{n}\right)}=e^{-1} \cdot e^{(n+p) \ln \left(1+\frac{1}{n}\right)}=e^{-1+(n+p) \ln \left(1+\frac{1}{n}\right)}$

For $\ln \left(1+\frac{1}{n}\right)$ we will use : $\ln (1+\mathrm{x})=\sum_{n=1}^{\infty}(-1)^{\mathrm{n}-1} \frac{x^{n}}{n}, \quad-1<\mathrm{x}<1$
$\ln \left(1+\frac{1}{n}\right)=\frac{1}{n}-\frac{1}{2 n^{2}}+o\left(\frac{1}{n^{2}}\right)$ now:
$\frac{a_{n}}{a_{n+1}}=e^{-1+(n+p) \ln \left(1+\frac{1}{n}\right)}=e^{-1+(n+p)\left(\frac{1}{n}-\frac{1}{2 n^{2}}+o\left(\frac{1}{n^{2}}\right)\right.}=e^{-1+1-\frac{1}{2 n}+\frac{p}{n}-\frac{p}{2 n^{2}+o\left(\frac{1}{n^{2}}\right)}}=e^{\frac{p}{n}-\frac{1}{2 n}+o\left(\frac{1}{n}\right)}=e^{\frac{p-\frac{1}{2}}{n}+o\left(\frac{1}{n}\right)}=1+\frac{p-\frac{1}{2}}{n}+o\left(\frac{1}{n}\right)$ when $n \rightarrow \infty$
Raabe criteria:
$\lim _{n \rightarrow \infty} n\left(\frac{a_{n}}{a_{n+1}}-1\right)=\lim _{n \rightarrow \infty} n\left(1+\frac{p-\frac{1}{2}}{n}-1\right)=\lim _{n \rightarrow \infty} n \frac{p-\frac{1}{2}}{n}=p-\frac{1}{2}$
Now, we think:
$p-\frac{1}{2}>1 \rightarrow p>\frac{3}{2} \quad$ series converges.

Cauchy integral criteria

If the function $\mathrm{f}(\mathrm{x})$ decreases, it is continuous and positive, then series $\sum_{n=1}^{\infty} f(n)$ convergent or divergent simultaneously with integral $\int_{1}^{\infty} f(x) d x$

Example 10.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$

Solution:

We are looking at the integral: $\int_{1}^{\infty} \frac{1}{x^{\alpha}} d x$
$\int_{1}^{\infty} \frac{1}{x^{\alpha}} d x=\lim _{A \rightarrow \infty} \int_{1}^{A} \frac{1}{x^{\alpha}} d x=\lim _{A \rightarrow \infty} \int_{1}^{A} x^{-\alpha} d x=\lim _{A \rightarrow \infty} \frac{x^{-\alpha+1}}{-\alpha+1} /_{1}^{A}=\lim _{A \rightarrow \infty}\left(\frac{A^{-\alpha+1}}{-\alpha+1}-\frac{1}{-\alpha+1}\right)=$
i) If $\alpha>1$ then $\lim _{A \rightarrow \infty}\left(\frac{A^{-\alpha+1}}{-\alpha+1}-\frac{1}{-\alpha+1}\right)=0-\frac{1}{-\alpha+1}=\frac{1}{\alpha-1}$
ii) If $\alpha \leq 1$ then $\lim _{A \rightarrow \infty}\left(\frac{A^{-\alpha+1}}{-\alpha+1}-\frac{1}{-\alpha+1}\right)=\infty$

Thus, the series converges for $\alpha>1$, and diverges for $\alpha \leq 1$.

Example 11.

Examine the convergence of series if $a_{n}=\frac{1}{n \ln ^{p} n} \quad$ where is $\mathrm{n}>1$

Solution:

$\int_{2}^{\infty} \frac{1}{x \ln ^{p} x} d x=\lim _{A \rightarrow \infty} \int_{2}^{A} \frac{1}{x \ln ^{p} x} d x$

First we solve the integral on the side without a borders:
$\int \frac{1}{x \ln ^{p} x} d x=\left|\begin{array}{l}\ln x=t \\ \frac{1}{x} d x=d t\end{array}\right|=\int \frac{1}{t^{p}} d t=\int t^{-p} d t=\frac{t^{-p+1}}{-p+1}=\frac{t^{1-p}}{1-p}$
$\int_{2}^{\infty} \frac{1}{x \ln ^{p} x} d x=\lim _{A \rightarrow \infty} \int_{2}^{A} \frac{1}{x \ln ^{p} x} d x=\lim _{A \rightarrow \infty} \frac{(\ln x)^{1-p}}{1-p} /_{2}^{A}=\lim _{A \rightarrow \infty} \frac{(\ln A)^{1-p}}{1-p}-\frac{(\ln 2)^{1-p}}{1-p}=$
i) If $1-\mathrm{p}<0 \rightarrow \mathrm{p}>1$ converges $\frac{(\ln A)^{1-p}}{1-p}-\frac{(\ln 2)^{1-p}}{1-p}=0-\frac{(\ln 2)^{1-p}}{1-p}=\frac{(\ln 2)^{1-p}}{p-1}$
ii) If $\mathrm{p}<1$ diverges $\lim _{A \rightarrow \infty} \frac{(\ln A)^{1-p}}{1-p}-\frac{(\ln 2)^{1-p}}{1-p}=\infty$

Gauss criteria

If for series $\sum_{n=1}^{\infty} a_{n}$ there is

$$
\frac{a_{n}}{a_{n+1}}=\lambda+\frac{\mu}{n}+o\left(\frac{1}{n^{1+\varepsilon}}\right) \text { for } \forall \varepsilon>0 \text { then : }
$$

i) If $\lambda>1$ series is convergent
ii) If $\lambda<1$ series is divergent
iii) If $\lambda=1$ then $\left\{\begin{array}{l}\text { for } \mu>1 \text { is convergent } \\ \text { for } \mu<1 \text { is divergent }\end{array}\right\}$

Example 12.

Examine the convergence of series $\sum_{n=1}^{\infty}\left[\frac{(2 n-1)!!}{(2 n)!!}\right]^{p}$

Solution:

$\frac{a_{n}}{a_{n+1}}=\frac{\left[\frac{(2 n-1)!!}{(2 n)!!}\right]^{p}}{\left[\frac{(2 n+1)!!}{(2 n+2)!!}\right]^{p}}=\left[\frac{(2 n-1)!!}{(2 n+1)!!} \frac{(2 n+2)!!}{(2 n)!!}\right]^{p}=\left[\frac{(2 n-1)!!}{(2 n+1)(2 n-1)!!} \frac{(2 n+2)(2 n)!!}{(2 n)!!}\right]^{p}=\left[\frac{2 n+2}{2 n+1}\right]^{p}$
Now pack a little the term and we use binomial formula:
$\left[\frac{2 n+2}{2 n+1}\right]^{p}=\left[\frac{2 n+1+1}{2 n+1}\right]^{p}=\left[1+\frac{1}{2 n+1}\right]^{p}=$
$=\binom{p}{0} 1^{p}\left(\frac{1}{2 n+1}\right)^{0}+\binom{p}{1} 1^{p-1}\left(\frac{1}{2 n+1}\right)^{1}+\binom{p}{2} 1^{p-2}\left(\frac{1}{2 n+1}\right)^{2}+\ldots$
$=1+\frac{p}{2 n+1}+\left\lvert\, \frac{p(p+1)}{2(2 n+1)^{2}}+o\left(\frac{1}{n^{2}}\right)\right.$
$=1+\frac{p}{2 n+1}+o\left(\frac{1}{n^{2}}\right)$
$=1+\frac{p}{2\left(n+\frac{1}{2}\right)}+o\left(\frac{1}{n^{2}}\right)$
$=1+\frac{p / 2}{n+1 / 2}+o\left(\frac{1}{n^{2}}\right)$ when $\mathrm{n} \rightarrow \infty$
$=1+\frac{p / 2}{n}+o\left(\frac{1}{n^{2}}\right)$

This compares with $\frac{a_{n}}{a_{n+1}}=\lambda+\frac{\mu}{n}+o\left(\frac{1}{n^{1+\varepsilon}}\right)$

It is clear that $\lambda=1$ and we need $\mu=\frac{p}{2}$
i) If $\mu=\frac{p}{2}>1 \rightarrow p>2 \quad$ series converges
ii) If $\mu=\frac{p}{2}<1 \rightarrow p<2$ series diverges

